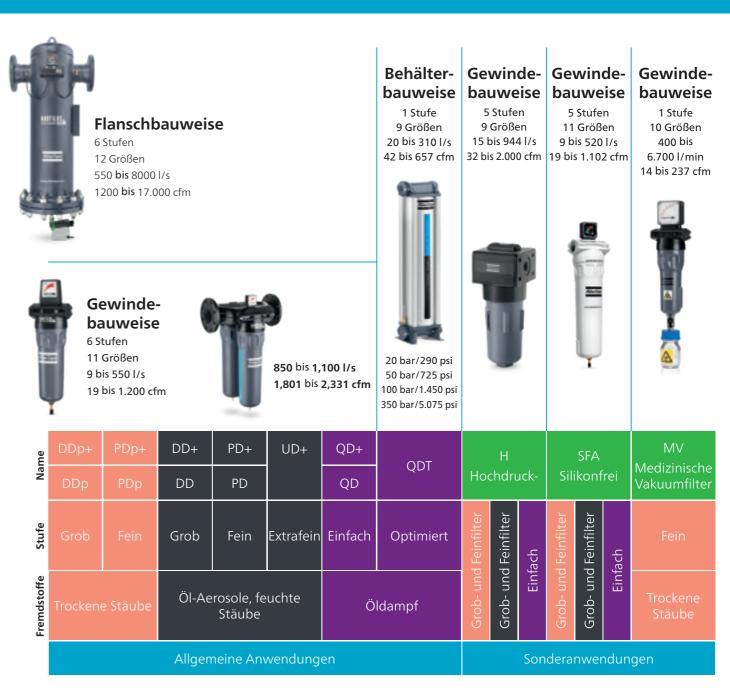


Für maximale produktivität

Eigene Entwicklungs- und Testarbeit

Seit 1998 arbeitet ein spezialisiertes Entwicklerteam an der Entwicklung moderner Filterlösungen. Wir investieren unser Expertenwissen in neue Filtermechanismen, modernste Prüfeinrichtungen und revolutionäre Innovationen. Bereits seit vielen Jahren arbeiten unsere Spezialisten eng mit der Universität Karlsruhe zusammen, die als führendes Institut auf dem Gebiet der Filterforschung gilt.

Strenge Qualitätskontrollen


Um höchsten Anforderungen gerecht zu werden, durchlaufen sämtliche Produkte von Atlas Copco eine strenge Qualitätskontrolle. Das gesamte Filtersortiment wird bei uns in modernsten Produktionsanlagen gefertigt. Sie können darauf vertrauen, dass wir strikte Zertifizierungs- und Testverfahren anwenden, damit unsere Filterprodukte stets höchsten Qualitätsstandards entsprechen.

Die Lösung von Atlas Copco

Druckluft ist anfällig für Verunreinigungen durch Schmutz, Wasser und Öl, die sich weiter in folgende Kategorien aufteilen lassen:

- SCHMUTZ: Mikroorganismen, Staub, Feststoffpartikel, Rostpartikel
- WASSER: Wasserdampf, kondensiertes Wasser, Wasser-Aerosole, säurehaltiges Kondensat
- ÖL: flüssiges Öl, Öl-Aerosol, Kohlenwasserstoffdampf

Atlas Copco bietet ein breites Angebot an Filterlösungen die aus umfangreichem Praxiswissen resultieren. Unsere breites Produktprogramm deckt nahezu jeden Bedarf an Filterlösungen ab. Die Atlas Copco Filterleistungen sind ausschließlich mit Original-Atlas Copco Ersatzpatronen gewährleistet.

Öl-Aerosole

Feuchte Stäube

Öldampf

Wassertröpfcher

Leistung mit Zertifikat

Die Filter von Atlas Copco werden nach der aktuellen Fassung der Norm ISO 8573-1:2010 klassifiziert. Akzeptieren Sie keine Filter, die sich nach älteren Fassungen wie ISO 8573-1:1991 oder ISO 8573-1:2001 richten: Diese Produkte erzeugen nicht dieselbe hohe Druckluftqualität. Die Klassifikation ist darauf zurückzuführen, dass unsere Filter nach ISO 12500-1:2007, ISO 12500-2:2007 und ISO 12500-3:2009 getestet werden. Diese Normen schreiben Versuchsanordnungen, Testverfahren und Einlassluftbedingungen bei Koaleszenzfiltern, Dampffiltern und Feststofffiltern für Druckluftanlagen vor und beurteilen die Filterleistung beim Abscheiden von Öl-Aerosolen, Öldämpfen und Feststoffpartikeln. Die Luftreinheit hinter dem Filter wird je nach Fremdstoff gemäß den in ISO 8573-2:2007, ISO 8573-5:2001 und ISO 8573-4:2001 vorgeschriebenen Testmethoden gemessen. Die Tests werden sowohl intern durchgeführt als auch an externe Labors ausgelagert und unabhängig vom TÜV bestätigt.

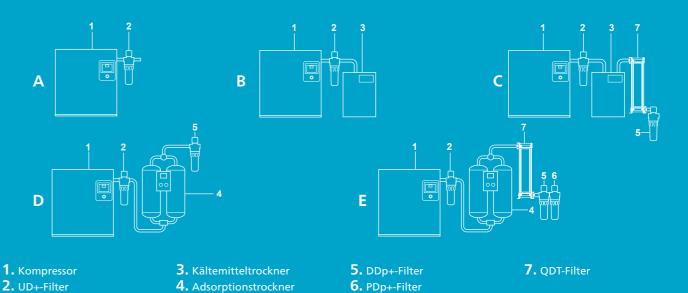
ISO-Zertifizierung

Die Filter von Atlas Copco wurden in Übereinstimmung mit den folgenden ISO-Normen umfassend getestet und zugelassen:

- ISO 8573-1:2010: Druckluft Schmutzstoffmengen und Reinheitsklassen
- ISO 8573-2:2007: Druckluft Testmethode für den Gehalt an Öl-Aerosolen
- ISO 8573-4:2001: Druckluft Testmethode für den Staubgehalt
- ISO 8573-5: 2001: Druckluft Testmethode für den Öldampfund organischen Lösungsmittelgehalt
- ISO 12500-1:2007: Filter für Druckluft Testmethoden Öl-Aerosole
- ISO 12500-2:2007: Filter für Druckluft Testmethoden Öl-Aerosole
- ISO 12500-3:2009: Filter für Druckluft Testmethoden Partikel

Sorgenfreiheit garantiert! FILTER APPROVALS COMPANY CERTIFICATION R R R R ACTIVE MEMBER OF

Eine Lösung für jede Anwendung


Je nach Anwendung wird an verschiedenen Einsatzorten eine andere Druckluftreinheit benötigt. Aus der folgenden Tabelle gehen die unterschiedlichen Luftreinheitsklassen hervor. Filter und Trockner von Atlas Copco erfüllen die Anforderungen sämtlicher Klassen.

	Feststof	fpartikel		Öl (= Aerosol, Flüssigkeit, Dampf)					
ISO 8573-1:2010 KLASSE	Nasse Betriebsbedingungen	Trockene Betriebsbedingungen	Wasser						
0		nach Kunden	wunsch*	Ölfre	ier Kompres	ssor			
1	DD+ und PD+	DDs. usd DDs.	Adsorptionstrockner	DD+ und PD+	und	QD+/QDT			
'	UD+	DDp+ und PDp+	Adsorptionstrockner	UD+	und	QD+/QDT			
2	DD+	DDp+	Adsorptionstrockner	DD+ und PD+					
2	DD+		Ausorptionstrockriei	UD+					
3	DD+		Adsorptionstrockner, Membrantrockner, Drehtrommeltrockner	DD+					
4	DD+		Membrantrockner, Kältemitteltrockner	DD+					
5	DD+	DDp+	Membrantrockner, Kältemitteltrockner		-				
6	-	-	Membrantrockner, Kältemitteltrockner		-				

^{*}Bitte wenden Sie sich an den zuständigen Vertriebsmitarbeiter bei Atlas Copco.

Typische Installationsbeispiele

Α	Kompressor - UD+	Luftreinheit entspricht ISO 8573-1:2010 [Klasse 1:-:2]
В	Kompressor - UD+ - Kältemitteltrockner	Luftreinheit entspricht ISO 8573-1:2010 [Klasse 1:4:2]*
С	Kompressor - UD+ - Kältemitteltrockner - QDT - DDp+	Luftreinheit entspricht ISO 8573-1:2010 [Klasse 2:4:1]
D	Kompressor - UD+ - Adsorptionstrockner - DDp+	Luftreinheit entspricht ISO 8573-1:2010 [Klasse 2:2:2]
E	Kompressor - UD+ - Adsorptionstrockner - QDT - DDp+ - PDp+	Luftreinheit entspricht ISO 8573-1:2010 [Klasse 1:2:1]

^{*} Die Partikelklasse 1 wird direkt hinter UD+ erreicht. Da die Luft durch die nachfolgenden Rohre und Behälter verunreinigt werden kann, sollten die Partikelfilter DDp+ und PDp+ direk vor dem Anwendungssystem installiert werden, damit die Partikelklasse 1 am Einsatzort gewährleistet ist.

Der Kompressor sollte mit einer Wasserabscheidung ausgerüstet sein (beispielsweise ein Nachkühler mit Ablauf oder Wasserabscheider). Vor Koaleszenzfiltern muss immer ein Wasserabscheider installiert sein. Bei kritischen Anwendungen sind am Einsatzort zusätzliche Luftaufbereitungsprodukte zur Beseitigung von Rohrverunreinigungen und Kondensat zu installieren

Baureihe UD+

2-in-1-Koaleszenzfilter mit sehr guten **Energiespar-Eigenschaften**

Die Filterbaureihe UD+ befreit die Druckluft effizient von Öl-Aerosolen, feuchten Stäuben und Wassertröpfchen und schützt Ihre Investitionen, Anlagen und Prozesse. Der UD+ kombiniert zwei Filtrationsstufen (DD+ und PD+) und stellt damit eine einzigartige Lösung für die hohen Qualitätsanforderungen diverser Anwendungen dar. Enorme Energieeinsparungen sind Ihnen sicher.

Ihre Vorteile

40 % Energieeinsparungen

Ein um 40 % geringerer Druckabfall als bei der herkömmlichen Filterkombination führt zu 40 % mehr Energieeffizienz.

Reine Luft

Dank eines dicken Filterpaketes um den UD+-Filter wird eine Luftreinheit wie beim Einsatz von zwei Filtern in Reihe erreicht.

Platzsparend

Durch das 2-in-1-Filterkonzept wird der Platzbedarf reduziert und das System vereinfacht. Dadurch eignet sich der UD+-Filter besonders für Anwendungen mit beengten Platzverhältnissen.

HAUTILUS

Kostensparend

Durch den Einbau von UD+-Filtern können im Vergleich zu herkömmlichen Filtern erhebliche Kosteneinsparungen erreicht werden.

Leistung

	UD+
Fremdstoffe	Öl-Aerosole, feuchte Stäube
Testmethode	ISO 8573-2:2007, ISO 12500-1:2007
Minimaler Restölgehalt (mg/m³)*	0,0009
Druckverlust nass (mbar)	245
Elementwechsel	Nach 4.000 Betriebsstunden oder nach 1 Jahr
Vorzuschalten	Wasserabscheidung

^{*} Ölgehalt am Einlass: 10 mg/m³. Öl = Öl-Aerosol und -Flüssigkeit

Größen und Abmessungen

	Nennk	apazität	Refere	nzdruck	Maximaldruck		Anschlüsse			Abmes	sungen			um für nenwechsel	Gewicht		
FILTERGRÖ- SSE UD+								,	A		В	С		D			
	l/s	cfm	bar(e)	psig	bar(e)	psig	in	mm	in	mm	in	mm	in	mm	in	kg	lbs
9+	9	19	7	102	16	232	3/8	90	3,5	61	2,4	268	10,6	75	2,9	1,0	2,2
15+	15	32	7	102	16	232	1/2	90	3,5	61	2,4	268	10,6	75	2,9	1,1	2,4
25+	25	53	7	102	16	232	1/2	90	3,5	61	2,4	323	12,8	75	2,9	1,3	2,9
45+	45	95	7	102	16	232	3/4 und 1	110	4,3	99	3,9	374	14,7	75	2,9	1,6	4,2
60+	60	127	7	102	16	232	1	110	4,3	99	3,9	414	16,3	75	2,9	2,1	4,6
100+	100	212	7	102	16	232	1	140	5,5	105	4,0	425	16,7	100	3,9	3,7	8,2
140+	140	297	7	102	16	232	1-1/2	140	5,5	105	4,1	520	20,5	100	3,9	4,2	9,3
180+	180	381	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,5	9,9
220+	220	466	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,6	10,1
310+	310	657	7	102	16	232	2 und 2-1/2	179	7,1	121	4,8	689	27,1	150	5,9	6,9	15,2
425+	425	901	7	102	16	232	3	210	8,3	128	5,1	791	31,1	200	7,9	11,0	24,2
550+	550	1165	7	102	16	232	3	210	8,3	128	5,1	961	37,8	200	7,9	12,6	27,8
550+F	550	1165	7	102	16	232	DN80	370	14,6	280	11,0	1295	51,0	1375	54,1	76,0	167,6
850+F	850	1801	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	141,0	310,9
1100+F	1100	2331	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	143,0	315,3
1400+F	1400	2967	7	102	16	232	DN150	620	24,4	485	19,1	1480	58,3	1560	61,4	210,0	463,0
1800+F	1800	3814	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	176,0	388,0
2200+F	2200	4662	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	178,0	392,4
3000+F	3000	6357	7	102	16	232	DN200	820	32,3	650	17,7	1745	68,7	1710	67,3	420,0	925,9
4000+F	4000	8476	7	102	16	232	DN200	820	32,3	650	17,7	1745	68,7	1710	67,3	428,0	943,6
5000+F	5000	10595	7	102	16	232	DN200	820	32,3	650	17,7	1745	68,7	1710	67,3	432,0	952,4
6000+F	6000	12714	7	102	16	232	DN250	920	36,2	815	32,1	2085	82,1	1625	64,0	671,0	1479,3
7000+F	7000	14833	7	102	16	232	DN250	920	36,2	815	32,1	2085	82,1	1625	64,0	675,0	1488,1
8000+F	8000	16952	7	102	16	232	DN300	1040	40,9	930	36,6	2070	81,5	1625	64,0	900,0	1984,2

Korrekturfaktoren

Einlassdruck (bar)	1	2	3	4	5	6	7	8	10	12	14	16
Einlassdruck (psig)	15	29	44	58	72,5	87	102	116	145	174	203	232
Korrekturfaktor	0,38	0,53	0,65	0,75	0,83	0,92	1,00	1,06	1,20	1,31	1,41	1,50

Beispiel:

- Betriebsdruck 3 bar(g), Druckluftmenge 35 l/s
- Wenn Sie die Nennkapazität des gewählten Filters mit dem entsprechenden Korrekturfaktor bei Sollbetriebsdruck multiplizieren, ergibt sich daraus die Kapazität bei Betriebsdruck:
- Größe 45+: 45 l/s \times 0,65 = 29 l/s => Filtergröße 45+ reicht nicht aus.

FARE

- Größe 60+: 60 $1/s \times 0.65 = 39 1/s =>$ Filtergröße 60+ ist die richtige.

850+T & 1100+T

9+-550+ 550+F - 8000+F

Optionen

- Bequeme Reihenschaltung (9 bis 550 l/s) dank Filteranschlusssatz
- Wandmontagesatz für die einfache Installation (9 bis 550 l/s)
- Schnellkupplung verbindet Filter mit einem Ablauf oder Öl-/Wasserabscheider
- Spannungsfreier Kontakt, angebracht im Differenzdruckmanometer, zur Fernanzeige eines erforderlichen Filterpatronenwechsels
- Elektronischer Wasserablass (EWD) mit Alarmfunktion und ohne Druckluftverlust (EWD ist optional bei Größen von 9 bis 550 l/s, serienmäßig bei Größen ≥ 550F)

Zertifizierung

- ISO 8573-2:2007
- ISO 12500-1:2007

Baureihe DD(+)/PD(+)

Hochleistungs-Koaleszenzfilter für die Ölabscheidung

Die Filter DD(+) und PD(+) befreien die Druckluft effizient von Öl-Aerosolen, feuchten Stäuben und Wassertröpfchen, die aus der Schmierung des Kompressorelements, der Ansaugluft oder dem Kompressor selbst stammen. Unsere innovativen Filterlösungen sorgen kostengünstig für höchste Luftreinheit und richten sich nach den steigenden Qualitätsanforderungen.

Maximale Filterleistung und Entwässerung bei Öl-Aerosolen, feuchten Stäuben und Wassertröpfchen

Hocheffiziente Filtermedien aus Glasfaser und Schaumstoff

Erhebliche Energieeinsparungen und geringere Betriebskosten

Konstruktion und Filtermedien optimiert für geringe Druckverluste

Hohe Zuverlässigkeit

Hochleistungs-Filterkern aus Edelstahl, doppelte O-Ringe, mit Epoxidharz versiegelte Deckel und korrosionshemmend beschichtetes Filtergehäuse

Einfache Wartung

Außenrippen am Gewindegehäuse oder drehbarer Unterdeckel bei verschweißten Gehäusen und Aufsteckelementen

Überwachung des Energieverbrauchs

Druckdifferenzanzeige (Indikator für 10 bis 35 l/s, Manometer für 50 bis 8000 l/s) (Option für das Standardangebot)

Leistung

	DD	PD	DD+	PD+								
Fremdstoffe	Öl-Aerosole, feuchte Stäube											
Testmethode		ISO 8573-2:2007,	SO 12500-1:2007									
Minimaler Restölgehalt (mg/m³)*	0,1*	0,01*	0,07*	0,008*								
Druckverlust nass (mbar)	245	280	180	215								
Elementwechsel		Nach 4.000 Betriebsstu	nden oder nach 1 Jahr									
Vorzuschalten	Wasserabscheidung	Wasserabscheidung DD	Wasserabscheidung	Wasserabscheidung DD+								

^{*} Ölgehalt am Einlass: 10 mg/m³. Öl = Öl-Aerosol und -Flüssigkeit

Größen und Abmessungen

FILTERG DD/			Nennka	apazität	i .	Referer	ferenzdruck Maximaldruck A		Anschlüsse			Abmes	ssungen	1		Freira Filterpa wec		Gev	vicht	
		Stan	dard		+						Α		В		С		D			
Standard	+	l/s	cfm	l/s	cfm	bar(e)	psig	bar(e)	psig	in	mm	in	mm	in	mm	in	mm	in	kg	lbs
12	10+	12	25	10	21	7	102	16	232	3/8	90	3,5	61	2,4	268	10,6	75	2,9	1,0	2,2
25	20+	25	53	20	42	7	102	16	232	1/2	90	3,5	61	2,4	268	10,6	75	2,9	1,1	2,4
45	35+	45	95	35	74	7	102	16	232	1/2	90	3,5	61	2,4	323	12,7	75	2,9	1,3	2,9
65	50+	65	138	50	106	7	102	16	232	3/4 & 1	110	4,3	99	3,9	374	14,7	75	2,9	1,6	4,2
90	70+	90	191	70	148	7	102	16	232	1	110	4,3	99	3,9	414	16,3	75	2,9	2,1	4,6
160	130+	160	339	130	275	7	102	16	232	1-1/2	140	5,5	105	4,1	520	20,5	100	3,9	4,2	9,3
215	170+	215	456	170	360	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,5	9,9
265	210+	265	562	210	445	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,6	10,1
360	310+	360	763	310	657	7	102	16	232	2 & 2-1/2	179	7,0	121	4,8	689	27,1	150	5,9	6,9	15,2
525	425+	525	1112	425	901	7	102	16	232	3	210	8,3	128	5,0	791	31,1	200	7,9	11,0	24,2
690	550+	690	1462	550	1165	7	102	16	232	3	210	8,3	128	5,0	961	37,9	200	7,9	12,6	27,8
630F	550+F	630	1335	550	1165	7	102	16	232	DN80	370	14,6	280	11	1295	51,0	1375	54,1	76,0	167,6
-	850+T	-	-	850	1801	7	102	16	232	DN100	510	20,1	418	16,5	796	31,3	200	7,9	35,2	77,6
970F	850+F	970	2055	850	1801	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	141,0	310,9
-	1100+T	-	-	1100	2331	7	102	16	232	DN100	510	20,1	418	16,5	966	38,0	200	7,9	37,4	82,4
1260F	1100+F	1260	2670	1100	2331	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	143,0	415,3
1600F	1400+F	1600	3390	1400	2967	7	102	16	232	DN150	620	24,4	485	19,1	1480	58,3	1560	61,4	210,0	463,0
2200F	1800+F	2200	4662	1800	3814	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	176,0	388,0
2400F	2200+F	2400	5086	2200	4662	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	178,0	392,4
3600F	3000+F	3600	7628	3000	6357	7	102	16	232	DN200	820	32,3	650	25,6	1745	68,7	1710	67,3	420,0	925,9
-	4000+F	-	-	4000	8476	7	102	16	232	DN200	820	32,3	650	25,6	1745	68,7	1710	67,3	428,0	943,6
-	5000+F	-	-	5000	10595	7	102	16	232	DN200	820	32,3	650	25,6	1745	68,7	1710	67,3	432,0	952,4
-	6000+F	-	-	6000	12714	7	102	16	232	DN250	920	32,3	815	32,1	2085	80,3	1625	64	671,0	1479,3
-	7000+F	-	-	7000	14833	7	102	16	232	DN250	920	36,2	815	32,1	2085	82,1	1625	64	675,0	1488,1
-	8000+F	-	-	8000	16952	7	102	16	232	DN300	1040	40,9	930	36,6	2070	81,5	1625	64	900,0	1984,2

Korrekturfaktoren

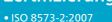
Einlassdruck (bar)	1	2	3	4	5	6	7	8	10	12	14	16
Einlassdruck (psig)	15	29	44	58	72,5	87	102	116	145	174	203	232
Korrekturfaktor	0,38	0,53	0,65	0,75	0,83	0,92	1,00	1,06	1,20	1,31	1,41	1,50

Beispiel:

- Betriebsdruck 3 bar(g), Druckluftmenge 35 l/s
- Wenn Sie die Nennkapazität des gewählten Filters mit dem entsprechenden Korrekturfaktor bei Sollbetriebsdruck multiplizieren, ergibt sich daraus die Kapazität
- Größe 50+: 50 l/s \times 0,65 = 33 l/s => Filtergröße 50+ reicht nicht aus.
- Größe 70+: 70 l/s \times 0,65 = 46 l/s \Rightarrow Filtergröße 70+ ist die richtige.

A man

PART


9+-550+

550+F - 8000+F

Optionen

- Bequeme Reihenschaltung (10+ bis 550+ l/s und 12 bis 690 l/s) dank Filteranschlusssatz
- Wandmontagesatz für die einfache Installation (10+ bis 550+ l/s und 12 bis 690 l/s)
- Schnellkupplung verbindet Filter mit einem Ablauf oder Öl-/Wasserabscheider
- Spannungsfreier Kontakt, angebracht im Differenzdruckmanometer, zur Fernanzeige eines erforderlichen Filterpatronenwechsels
- Elektronischer Wasserablass (EWD) mit Alarmfunktion und ohne Druckluftverlust (EWD optional bei 10+ bis 550+ l/s und 12 bis 690 l/s; serienmäßig bei ≥550F)

Zertifizierung

• ISO 12500-1:2007

Elektronischer Wasserablass (EWD)

Baureihe DDp(+)/PDp(+)

Optimal gegen Trockenstaub

Die Filter DDp(+) und PDp(+) befreien die Druckluft effizient von Staub, Partikeln und Mikroorganismen, die auf Korrosion, Schmutz und Adsorptionsmaterialien zurückzuführen sind. Unsere innovativen Filterlösungen sorgen kostengünstig für höchste Luftreinheit und richten sich nach den steigenden Qualitätsanforderungen.

Maximale Abscheidung von Schmutz, Feststoffpartikeln, Mikroorganismen und Rostpartikeln

Hocheffiziente Filtermedien aus Glasfaser und Schaumstoff

Erhebliche Energieeinsparungen und geringere Betriebskosten

Konstruktion und Filtermedien optimiert für geringe Druckverluste

Hohe Zuverlässigkeit

Hochleistungs-Filterkern aus Edelstahl, doppelte O-Ringe, mit Epoxidharz versiegelte Deckel und korrosionshemmend beschichtetes Filtergehäuse

Einfache Wartung

Außenrippen am Gewindegehäuse oder drehbarer Unterdeckel bei verschweißten Gehäusen und Aufsteckelementen

Überwachung des Energieverbrauchs

Druckdifferenzanzeige (Indikator für 10 bis 35 l/s, Manometer für 45 bis 8000 l/s) (Option für das Standardangebot)

Leistung

	DDp	PDp	DDp+	PDp+
Fremdstoffe		Trocken	e Stäube	
Testmethode				
Filterwirkungsgrad bei Feststoffen (% bei MPPS)	99,81	99,97	99,92	99,98
Druckverlust trocken (mbar)	135	150	85	100
Elementwechsel	nach -	4000 Betriebsstunden, nach 1	Jahr bzw. bei 350 mbar Druck	abfall
Vorzuschalten	Trockner	Trockner DDp	Trockner	Trockner DDp+

Größen und Abmessungen

FILTER(Nennka	ıpazität		Referer	eferenzdruck Maximaldruck		Anschlüsse			Abmes	sunger	1			um für tronen- hsel	Gew	vicht	
		Stan	dard		+						ı	١.	В		С		1)		
Standard	+	l/s	cfm	l/s	cfm	bar(e)	psig	bar(e)	psig	in	mm	in	mm	in	mm	in	mm	in	kg	lbs
12	10+	12	25	10	21	7	102	16	232	3/8	90	3,5	61	2,4	268	10,6	75	2,9	1,0	2,2
25	20+	25	53	20	42	7	102	16	232	1/2	90	3,5	61	2,4	268	10,6	75	2,9	1,1	2,4
45	35+	45	95	35	74	7	102	16	232	1/2	90	3,5	61	2,4	323	12,7	75	2,9	1,3	2,9
65	50+	65	138	50	106	7	102	16	232	3/4 & 1	110	4,3	99	3,9	374	14,7	75	2,9	1,6	4,2
90	70+	90	191	70	148	7	102	16	232	1	110	4,3	99	3,9	414	16,3	75	2,9	2,1	4,6
160	130+	160	339	130	275	7	102	16	232	1-1/2	140	5,5	105	4,1	520	20,5	100	3,9	4,2	9,3
215	170+	215	456	170	360	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,5	9,9
265	210+	265	562	210	445	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,6	10,1
360	310+	360	763	310	657	7	102	16	232	2 & 2-1/2	179	7,0	121	4,8	689	27,1	150	5,9	6,9	15,2
525	425+	525	1112	425	901	7	102	16	232	3	210	8,3	128	5,0	791	31,1	200	7,9	11,0	24,2
690	550+	690	1462	550	1165	7	102	16	232	3	210	8,3	128	5,0	961	37,9	200	7,9	12,6	27,8
630F	550+F	630	1335	550	1165	7	102	16	232	DN80	370	14,6	280	11	1295	51,0	1375	54,1	76,0	167,6
-	850+T	-	-	850	1801	7	102	16	232	DN100	510	20,1	418	16,5	796	31,3	200	7,9	35,2	77,6
970F	850+F	970	2055	850	1801	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	141,0	310,9
-	1100+T	-	-	1100	2331	7	102	16	232	DN100	510	20,1	418	16,5	966	38,0	200	7,9	37,4	82,4
1260F	1100+F	1260	2670	1100	2331	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	143,0	415,3
1600F	1400+F	1600	3390	1400	2967	7	102	16	232	DN150	620	24,4	485	19,1	1480	58,3	1560	61,4	210,0	463,0
2200F	1800+F	2200	4662	1800	3814	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	176,0	388,0
2400F	2200+F	2400	5086	2200	4662	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	178,0	392,4
3600F	3000+F	3600	7628	3000	6357	7	102	16	232	DN200	820	32,3	650	25,6	1745	68,7	1710	67,3	420,0	925,9
-	4000+F	-	-	4000	8476	7	102	16	232	DN200	820	32,3	650	25,6	1745	68,7	1710	67,3	428,0	943,6
-	5000+F	-	-	5000	10595	7	102	16	232	DN250	820	32,3	650	25,6	1745	68,7	1710	67,3	432,0	952,4
-	6000+F	-	-	6000	12714	7	102	16	232	DN250	920	32,3	815	32,1	2085	80,3	1625	64	671,0	1479,3
-	7000+F	-	-	7000	14833	7	102	16	232	DN300	920	36,2	815	32,1	2085	82,1	1625	64	675,0	1488,1
-	8000+F	-	-	8000	16952	7	102	16	232	DN300	1040	40,9	930	36,6	2070	81,5	1625	64	900,0	1984,2

Korrekturfaktoren

Einlassdruck (bar)	1	2	3	4	5	6	7	8	10	12	14	16
Einlassdruck (psig)	15	29	44	58	72,5	87	102	116	145	174	203	232
Korrekturfaktor	0,38	0,53	0,65	0,75	0,83	0,92	1,00	1,06	1,20	1,31	1,41	1,50

Beispiel:

- Betriebsdruck 3 bar(g), Druckluftmenge 35 l/s
- Wenn Sie die Nennkapazität des gewählten Filters mit dem entsprechenden Korrekturfaktor bei Sollbetriebsdruck multiplizieren, ergibt sich daraus die Kapazität bei Betriebsdruck:
- Größe 50+: 50 l/s \times 0,65 = 33 l/s => Filtergröße 50+ reicht nicht aus.
- Größe 70+: 70 l/s \times 0,65 = 46 l/s \Rightarrow Filtergröße 70+ ist die richtige.

850+T & 1100+T

9+ - 550+

Optionen

- Bequeme Reihenschaltung (10+ bis 550+ l/s und 12 bis 690 l/s) dank Filteranschlusssatz
- Wandmontagesatz für die einfache Installation (10+ bis 550+ l/s und 12 bis 690 l/s)
- Spannungsfreier Kontakt, angebracht im Differenzdruckmanometer, zur Fernanzeige eines erforderlichen Filterpatronenwechsels

Zertifizierung

- ISO 8573-4:2001
- ISO 12500-3:2009

Baureihe QDT

Aktivkohleadsorber für die optimale Öldampfabscheidung

Der hocheffiziente Aktivkohleadsorber befreit die Druckluft von Kohlenwasserstoffen, Geruchsstoffen und Öldämpfen.

Die Aktivkohleschichten senken den Restölgehalt per Adsorption auf unter 0,003 mg/m³.

Der Druckabfall ist gering und bleibt über die gesamte Lebensdauer des Filters minimal.

Ihre Vorteile

Optimale Filterung von Öldämpfen Hochwertige Aktivkohle

Geringer Druckabfall
Optimierter Strömungsweg

Hohe Zuverlässigkeit

Robuste Bauweise und optimiertes Filtermaterial

Optionen

- Ölindikator sorgt für reine Luft
- Wandmontagesatz für die einfache Installation (20 bis 185 l/s)

Zertifizierung
ISO 8573-5:2001

Leistung

	QDT
Fremdstoffe	Öldampf
Testmethode	ISO 8573-5:2001, ISO 12500-2:2007
Minimaler Restölgehalt (mg/m³)*	0,003
Druckverlust trocken (mbar)	125
Elementwechsel	Nach 4.000 Betriebsstunden oder nach 1 Jahr
Vorzuschalten	Wasserabscheidung UD+ oder DD+/PD+ Trockner

^{*} nach UD+ oder DD+/PD+ mit 10 mg/m³ Ölgehalt in der Einlassluft

Größen und Abmessungen

	Nennkapazität					Abmes	sungen				vicht
FILTERGRÖ- SSE QDT	Nennka	apazitat	oder NPT	,	A	ı	В	C	:	Gew	ricnt
	l/s	cfm	in	mm	in	mm	in	mm	in	kg	lbs
20	20	42	1/2"	490	19	223	9	190	7	10	22
45	45	95	1"	715	28	223	9	190	7	15	33
60	60	127	1"	840	33	223	9	190	7	18	40
95	95	210	1"	715	28	387	15	190	7	29	64
125	125	265	1 1/2"	840	33	387	15	190	7	34	75
150	150	318	1 1/2"	715	28	551	22	190	7	42	93
185	185	392	1 1/2"	840	33	551	22	190	7	50	110
245	245	519	1 1/2"	840	33	715	28	190	7	67	148
310	310	657	1 1/2"	840	33	879	35	190	7	84	185
425	425	901	DN80 / 3"	2148	85	710	28	600	24	264	581
550	550	1165	DN80 / 3"	2190	86	710	28	670	26	302	664
850	850	1801	DN100 / 4"	2320	91	724	29	805	32	391	860
1100	1100	2331	DN100 / 4"	2450	97	934	37	820	32	602	1324
1800	1800	3814	DN150 / 6"	2612	103	1046	41	980	39	882	1940

Korrekturfaktoren

Für andere Drucklufteinlasstemperaturen ist die Filterkapazität mit den folgenden Korrekturfaktoren (Kt) zu multiplizieren:

Einlasstemperatur °C	20	25	30	35	40	45	50	55	60
Einlasstemperatur °F	68	77	96	95	104	113	122	131	140
Korrekturfaktor	1	1	1	1	0,85	0,67	0,59	0,48	0,42

Für andere Drucklufteinlassdrücke ist die Filterkapazität mit den folgenden Korrekturfaktoren (Kp) zu multiplizieren:

Einlassdruck (bar)	3	4	5	6	7	8	9	10	11	12	13
Einlassdruck (psi)	44	58	73	87	102	116	131	145	160	174	193
Korrekturfaktor	0,57	0,77	0,83	1	1	1	1	1,05	1,05	1,11	1,18

Beispiel:

- \bullet Betriebstemperatur 50 °C, Druck 12 bar(g), Druckluftmenge 120 l/s
- Multiplizieren Sie die nominale Kapazität des Filters mit dem entsprechenden Korrekturfaktor für die benötigte Arbeitstemperatur und den Arbeitsdruck, um die Kapazität unter den aktuellen Arbeitsbedingungen zu erhalten.
- Der QDT 150 Filter ist nicht groß genug
- Der QDT 195 Filter hat die erforderliche Größe
- Alternative Methode: Dividieren Sie die aktuell benötige Durchflußmenge durch die Korrekturfaktoren und wählen Sie die nächstgrößere Filtergröße
 - Der nächstgrößere Filter ist der QDT 195, dieser hat die erforderliche Größe.

UD+ und QDT: das Siegerteam

KLASSE 1: Gesamtölgehalt gemäß ISO 8573-1:2010

Die Atlas Copco Filterreihe UD+ bis QDT erfüllt die Vorgaben der Luftreinheitsklasse 1 in puncto Gesamtölgehalt nach ISO 8573-1:2010 bei einer typischen Druckluftanwendung.

UD+	QDT
Abscheidung von Ölflüssigkeit und Öl-Aerosol	Öldampfabscheidung
Garantiert 0,0009 mg/m³ Aerosol und Flüssigkeit	Garantiert 0,003 mg/m³ Dampf
40 % weniger Druckabfall als bei DD+/PD+	65 % weniger Druckabfall als beim bisherigen QDT
50 % weniger Stellfläche	Viel kompakter als Behältersysteme

QDT 425-1800

Baureihe QD(+)

Hochleistungs-Öldampffilter

Die QD(+)-Filter befreien die Druckluft effizient von Kohlenwasserstoffen, Geruchsstoffen und Öldämpfen und schützt Ihre Investitionen, Anlagen und Prozesse. Die Aktivkohleschichten reduzieren den Restölgehalt per Adsorption auf unter 0,003 mg/m³. Der Druckabfall ist gering und bleibt über die gesamte Lebensdauer des Filters minimal.

Ihre Vorteile

Optimale Filterung von Öldämpfen Hocheffiziente Aktivkohleschichten

Erhebliche Energieeinsparungen und geringere Betriebskosten Geringe Druckverluste

Hohe Zuverlässigkeit

Hochleistungs-Filterkern aus Edelstahl, doppelte O-Ringe, mit Epoxidharz versiegelte Deckel und korrosionshemmend beschichtetes Filtergehäuse

Einfache Wartung

Außenrippen am Gewindegehäuse oder drehbarer Unterdeckel bei verschweißten Gehäusen und Aufsteckelementen

Optionen

- Bequeme Reihenschaltung (10+ bis 550+ l/s und 12 bis 690 l/s) dank Filteranschlusssatz
- Wandmontagesatz für die einfache Installation (10+ bis 550+ l/s und 12 bis 690 l/s)

Die Größen und Abmessungen sind auf den Produktseiten zu den Baureihen DD(+) und PD(+) angegeben.

Leistung

	QD	QD+				
Fremdstoffe	Öldampf					
Testmethode	ISO 8573-5:2001					
Minimaler Restölgehalt (mg/m³)*	0,003*					
Druckverlust trocken (mbar)	190	140				
Elementwechsel	Nach 1.000 Betriebsstu	ınden oder nach 1 Jahr				
Vorzuschalten	Wasserabscheidung DD/PD Trockner	Wasserabscheidung UD+ oder DD+/PD+ Trockner				

^{*} nach UD+ oder DD(+)/PD(+) mit 10 mg/m³ Ölgehalt in der Einlassluft

Baureihe SFA

Silikonfreie Abscheidung von Öl-Aerosolen, Stäuben und Öldämpfen

Eine hohe Druckluftqualität ist die Voraussetzung für den Schutz Ihrer Maschinen, Anlagen und Endprodukte. Unsere silikonfreien SFA-Filter befreien Ihre Druckluft effizient von trockenen und feuchten Stäuben, Öl-Aerosolen und Wassertröpfchen. Die SFA-Baureihe wird nach den hohen Standards silikonfreier Geräte gefertigt und behandelt und wurde vom Fraunhofer-Institut als garantiert silikonfrei bestätigt.

Ihre Vorteile

Maximale Beseitigung von Verunreinigungen

Abscheidung von trockenen und feuchten Stäuben, Partikeln, Öl-Aerosolen und Wassertröpfchen. Hocheffiziente Glasfaserund Vliesmedien

Erhebliche Energieeinsparungen und geringere Betriebskosten

Konstruktion und Filtermedien optimiert für geringen Druckabfall

Hohe Zuverlässigkeit

Hochleistungs-Filterkern aus Edelstahl, doppelte O-Ringe, mit Epoxidharz versiegelte Deckel und korrosionshemmend beschichtetes Filtergehäuse

Einfache Wartung

Außenrippen an Gewindegehäuse und Aufsteckelementen

Überwachung des Energieverbrauchs

Druckdifferenzanzeige (Indikator für 9 bis 32 l/s, Manometer für 44 bis 520 l/s) (Option)

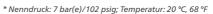
Anwendungen

- Lackierung
- Automobilindustrie

Optionen

- Filteranschlusssatz (9 bis 520 l/s)
- Wandmontagesatz (9 bis 520 l/s)
- Schnellkupplung (nur DD und PD)
- Verlustfreier elektronischer
 Wasserablass (EWD; nur DD und PD)
- Spannungsfreier Kontakt im Differenzdruckmesser (nicht beim QD)

Zertifizierung


Lackverträglichkeitszertifikat (Fraunhofer-Institut)

Die Leistung der SFA-Filter ist vergleichbar mit der Leistung der "Plus"-Filterbaureihen (siehe S. 8, 10 und 14).

Größen und Abmessungen

FILTERGRÖSSE		ıkapa- ät*		imale zität*	Anschlüsse G oder NPT			Abmes	sungen			Freiraum für Filterpatronen- wechsel		Gewicht	
			Кири	Litut	ouer in i	A B		١ ،	c	١)				
DD, DDp, PD, PDp, QD	l/s	cfm	l/s	cfm	in	mm	in	mm	in	mm	in	mm	in	kg	lbs
9	9	19	11	23	3/8	90	3,54	61	2,40	268	10,55	75	2,95	1	2,2
17	17	36	21	45	1/2	90	3,54	61	2,40	268	10,55	75	2,95	1,1	2,4
32	32	68	40	85	1/2	90	3,54	61	2,40	323	12,72	75	2,95	1,3	2,9
44	44	93	55	117	3/4 und 1	110	4,33	98,5	3,88	374	14,72	75	2,95	1,9	4,19
60	60	127	75	159	1	110	4,33	98,5	3,88	414	16,3	75	2,95	2,1	4,6
120	120	254	150	318	1-1/2	140	5,51	105	4,13	520	20,47	100	3,94	4,2	9,3
150	150	318	188	399	1-1/2	140	5,51	105	4,13	603	23,47	100	3,94	4,5	9,9
175	175	371	219	464	1-1/2	140	5,51	105	4,13	603	23,47	100	3,94	4,6	10,1
280	280	594	350	742	2 und 2-1/2	179	7,05	121	4,76	689	27,13	150	5,91	6,9	15,2
390	390	827	488	1035	3	210	8,27	128	5,04	791	31,14	200	7,87	11	24,2
520	520	1102	650	1378	3	210	8,27	128	5,04	961	37,83	200	7,87	12,6	27,8

Baureihe H

Garantierte Luftreinheit bis 350 bar

Hochdruckfilter befreien die Druckluft effizient von Öl-Aerosolen, trockenen und feuchten Stäuben, Partikeln, Wassertröpfchen und Öldämpfen und schützen Ihre Investitionen, Anlagen und Prozesse. Unsere innovativen Hochdruckfilterlösungen sorgen kostengünstig für höchste Luftreinheit und richten sich nach den steigenden Qualitätsanforderungen bei Betriebsdrücken bis 350 bar. Alle Hochdruckfiltergehäuse werden hydraulisch getestet, um den sicheren, zuverlässigen Betrieb sicherzustellen. Jeder Filter wird mit einer Druckprüfbescheinigung geliefert.

Maximale Fremdstoffabscheidung (trockene und feuchte Stäube, Partikel, Öl-Aerosole und Wassertröpfchen)

Hocheffiziente Filtermedien aus Glasfaser und Vlies

Erhebliche Energieeinsparungen und begrenzte Betriebskosten

Konstruktion und Filtermedien optimiert für geringe Druckverluste

Hohe Zuverlässigkeit

Hochleistungs-Filterkern aus Edelstahl, doppelte O-Ringe, mit Epoxidharz versiegelte Deckel und korrosionshemmend beschichtetes Filtergehäuse

Anwendungen

- Chemische Industrie
- Nahrungsmittel- und Getränkeindustrie
- Fertigung
- Militär
- Öl und Gas

Leistung

	DDHp+	PDHp+	DDH+	PDH+	QDH+
Fremdstoffe	Trocken	e Stäube	Öl-Aerosole, f	Öldampf	
Testmethode	ISO 8573 ISO 1250	3-4:2001 10-3:2009	ISO 8573 ISO 1250	ISO 8573-5:2001	
Minimaler Restölgehalt (mg/m³)	-	-	0,08*	0,007*	0,003**
Filterwirkungsgrad bei Feststoffen (% bei MPPS)	99,92 (0,1)	99,98 (0,06)	Entfällt	Entfällt	Entfällt
Druckverlust trocken (mbar)	85	100	Entfällt	Entfällt	140
Druckverlust nass (mbar)	Entfällt	Entfällt	180	215	Entfällt
Elementwechsel		den, nach 1 Jahr bzw. bei Druckabfall	Nach 4.000 Betriebsstu	Nach 1.000 Betriebsstun- den oder nach 1 Jahr	
Vorzuschalten	Vorzuschalten Entfällt DDHp+		Entfällt	DDH+	DDH+/PDH+

Vor dem Filter muss immer eine Wasserabscheidung installiert sein. Die Wasserabscheidung wird in der Hochdruckleitung nicht benötigt, wenn in der Niederdruckleitung ein ausreichend niedriger Drucktaupunkt herrscht (z. B. Stickstoffgenerator, Niederdruckleitung mit Adsorptionstrockner).

Größen und Abmessungen

FILTERGRÖSSE							Abmess	sungen				
TIETERGROSSE		Nennkapazitä	it	Anschlüsse		Α	E	3			Gew	richt
DDH, DDHp, PDH, PDHp, QDH	m³/h	l/s	cfm	in	mm	in	mm	in	mm	in	kg	lbs
20 bar Aluminium												
15+	54	15	32	3/8	90	3,5	61	2,4	268	10,6	1,0	2,2
32+	115	32	68	1/2	90	3,5	61	2,4	268	10,6	1,1	2,4
55+	198	55	117	1/2	90	3,5	61	2,4	323	12,7	1,3	2,9
80+	288	80	170	3/4 und 1	110	4,3	99	3,9	374	14,7	1,6	3,5
110+	396	110	233	1	110	4,3	99	3,9	414	16,3	2,1	4,6
200+	720	200	424	1 1/2	140	5,5	105	4,1	520	20,5	4,2	9,3
270+	972	270	572	1 1/2	140	5,5	105	4,1	603	23,7	4,5	9,9
330+	1188	330	699	1 1/2	140	5,5	105	4,1	603	23,7	4,6	10,1
490+	1764	490	1038	2 und 2 1/2	179	7,0	121	4,8	689	27,1	6,9	15,2
50 bar Aluminium												
160+	160	44	94	1/4	63	2,5	63	2,5	150	5,9	0,3	0,7
250+	250	69	147	3/8	63	2,5	63	2,5	190	7,4	0,3	0,7
450+	450	125	265	1/2	114	4,4	114	4,4	305	11,9	2,6	5,7
550+	550	153	324	3/4	114	4,4	114	4,4	305	11,9	2,6	5,7
835+	835	232	491	1	114	4,4	114	4,4	395	15,4	3,3	7,3
1250+	1250	347	736	1 1/2	146	5,7	146	5,7	435	17,0	7,5	16,5
1725+	1725	479	1015	1 1/2	146	5,7	146	5,7	435	17,0	7,5	16,5
1925+	1925	535	1133	2	146	5,7	146	5,7	435	17,0	7,5	16,5
3200+	3200	889	1883	2	146	5,7	146	5,7	635	24,8	10	22,0
50 bar Edelstahl												
100+	100	28	59	1/4	85	3,3	85	3,3	202	7,9	1,7	3,7
200+	200	56	118	3/8	85	3,3	85	3,3	227	8,9	2	4,4
340+	340	94	200	1/2	85	3,3	85	3,3	257	10,0	2,2	4,8
500+	500	139	294	3/4	110	4,3	110	4,3	270	10,5	4	8,8
1000+	1000	278	589	1	110	4,3	110	4,3	422	16,5	5	11,0
1700+	1700	472	1000	1 1/2	150	5,9	150	5,9	517	20,2	15	33,1
2040+	2040	567	1200	2	150	5,9	150	5,9	517	20,2	15	33,1
3400+	3400	944	2000	2	150	5,9	150	5,9	817	31,9	21	46,3
100 bar Edelstahl												
100+	100	28	59	1/4	65	2,5	65	2,5	135	5,3	3,2	7,1
315+	315	88	185	1/2	65	2,5	65	2,5	250	9,8	5,6	12,3
460+	460	128	271	3/4	88	3,4	88	3,4	275	10,7	6,1	13,4
680+	680	189	400	1	135	5,3	135	5,3	265	10,3	10,5	23,1
1200+	1200	333	706	1	135	5,3	135	5,3	480	18,7	14,7	32,4
1700+	1700	472	1000	1 1/2	150	5,9	150	5,9	525	20,5	22	48,5
3400+	3400	944	2000	2	150	5,9	150	5,9	815	31,8	28	61,7
350 bar Edelstahl												
48+	48	13	28	1/4	41	1,6	41	1,6	103	4,0	1,6	3,5
111+	111	31	65	1/4	65	2,5	65	2,5	135	5,3	3,2	7,1
255+	255	71	150	1/2	88,5	3,5	88,5	3,5	210	8,2	5,6	12,3
510+	510	142	300	3/4	88,5	3,5	88,5	3,5	280	10,9	6,1	13,4
750+	750	208	441	1	150	5,9	150	5,9	330	12,9	14,5	32,0
1330+	1330	369	783	1	150	5,9	150	5,9	480	18,7	17,4	38,3

Korrekturfaktoren

Korrekturfaktor

20 bar Aluminium										
Betriebsdruck	bar(g)	-	-	-	-	-	14	16	18	20
betriebsuruck	psig	-	-	-	-	-	203	232	261	290
Korrekturfaktor							0,9	0,95	1	1,0
50 bar Aluminium und Ed	lelstahl									
Betriebsdruck	bar(g)	4	6	8	10	15	20	30	40	50
betriebsuruck	psig	58	87	116	145	218	290	435	581	72
Korrekturfaktor		0,14	0,22	0,28	0,34	0,47	0,56	0,7	0,85	1
100 bar Edelstahl										
Betriebsdruck	bar(g)	20	30	40	50	60	70	80	90	100
betriebsuruck	psig	290	435	581	726	871	1016	1161	1306	145
Korrekturfaktor		0,45	0,57	0,68	0,8	0,84	0,88	0,92	0,96	1
350 bar Edelstahl										
Betriebsdruck	bar(g)	-	-	50	100	150	200	250	300	35
	psig	-	-	726	1451	2177	2903	3628	4354	508

0,73 0,78 0,82 0,87 0,91 0,96 1

- **Beispiel:** Betriebsdruck 300 bar(g), Druckluftmenge 500 m³/h
- Wenn Sie die Nennkapazität des gewählten Filters mit dem entsprechenden Korrekturfaktor bei Sollbetriebsdruck
- Größe 510+: 510 m³/h × 0,96 = 490 m³/h => Filtergröße 510+
- reicht nicht aus. Größe 750+: 750 m³/h \times 0,96 = 720 m³/h \Rightarrow Filtergröße 750+

^{*}Ölgehalt am Einlass: 10 mg/m³. Öl = Öl-Aerosol und -Flüssigkeit

^{*} nach DD(+)/PD(+) mit 10 mg/m³ Ölgehalt in der Einlassluft

Baureihe MV

Medizinische Vakuumfilter zum Schutz von Mensch und Maschine

Medizinische Vakuumfilter werden am Einlass der Vakuumpumpe montiert und scheiden Flüssigkeiten, Feststoffe und Bakterien ab, die zu Schäden an der Vakuumpumpe führen und die Luft hinter der Pumpe biologisch infizieren können. Unsere innovativen Vakuumfilterlösungen erfüllen die Vorgaben der HTM für Medizintechnik.

Maximale Beseitigung von Verunreinigungen

Abscheidung von trockenen und feuchten Stäuben, Partikeln, Öl-Aerosolen und Wassertröpfchen.

Hocheffiziente Glasfaser- und Vliesmedien

Erhebliche Energieeinsparungen und begrenzte Betriebskosten

Konstruktion und Filtermedien optimiert für geringe Druckverluste

Hohe Zuverlässigkeit

Hochleistungs-Filterkern aus Edelstahl, doppelte O-Ringe, mit Epoxidharz versiegelte Deckel und korrosionshemmend beschichtetes Filtergehäuse

Einfache Wartung

Außenrippen an Gewindegehäuse und Aufsteckelementen

Überwachung des Energieverbrauchs

Druckverlust an Druckdifferenzanzeige erkennbar

Anwendungen

- Medizintechnik
- Zahnmedizin
- Tiermedizin

Größen und Abmessungen

	N	Anschlüsse									
FILTERGRÖSSE MV	Nennkapazität	Anschlusse	A		В			c	Gewicht		
	l/min	in	mm	in	mm	in	mm	in	kg	lbs	
10	400	1/2	60	2	90	4	240	9	1,3	2,9	
20	800	1	76	3	110	4	300	12	2,1	4,6	
60	2400	1 1/2	103	4	140	5	489	19	4,6	10,1	
80	3400	2	135	5	179	7	575	22	6,9	15,2	
120	4900	3	155	6	210	8	677	26	11,0	24,2	
160	6700	3	155	6	210	8	847	33	12,6	27,8	

Korrekturfaktoren

Betriebsdruck	bar(a)	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
	psig	1	3	4	6	7	9	10	12	13	15
	Torr = mm Hg	75	150	225	300	375	450	525	600	675	750
Korrekturfaktor		0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1

Beispiel:

- Betriebsvakuum 300 mbar(a), Kapazität 1000 l/min
- Wenn Sie die Nennkapazität des gewählten Filters mit dem entsprechenden Korrekturfaktor bei Sollbetriebsvakuum multiplizieren, ergibt sich daraus die passende Kapazität:
- Größe 60: 2400 l/min \times 0,3 = 720 l/min \Rightarrow Filtergröße 60 reicht nicht aus.
- Größe 80: 3400 l/min × 0,3 = 1020 l/min => Filtergröße 80 ist die richtige.

Leistung

	MV
Fremdstoffe	Trockene Stäube
Höchsttemperatur	60°C/140°F
Max. Betriebsvakuum	Vollvakuum
Testmethode	Natriumflammentest BS 3928:1969 nach den Vorgaben der HTM2022
Filterwirkungsgrad bei Feststoffen (%)*	99,995
Druckverlust trocken (mbar)	30
Elementwechsel	nach 2.000 Betriebsstunden, nach 1 Jahr bzw. bei 100 mbar Druckabfall

^{*} gemäß BS 3928-1969

Optionen

- Wandmontagesatz
- Sekretglas

Sekretglas

Zertifizierung

BS 3928 Natriumflammen-Testbescheinigung nach den Vorgaben der HTM2022

